Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## μ SR Spectroscopy of the Kondo Insulators Lu_{1-x}Yb_xB₁₂ G. M. Kalvius¹, D. R. Noakes², R. Wäppling³, A. Kratzer¹, E. Schreier¹, F. Iga⁴, T. Takabatake⁴, H. v. Löhneysen⁵ - ¹ Physics Department, TU Munich, 85747 Garching, Germany - ² Physics Department, Virginia State University, Petersburg VA 23806, USA - ³ Physics Department, Uppsala University, 75121 Uppsala, Sweden - ⁴ ADSM, Hiroshima University, Higashi-Hiroshima 739-8526, Japan - ⁵ Physics Department, University of Karlsruhe, 76128 Karlsruhe, Germany Single crystals of $Yb_{1-x}Lu_xB_{12}$ ($x=0,\,0.125,\,0.5,\,1$) were measured between 1.8 K and 300 K. Previous μSR studies¹ on YbB_{12} powder were interpreted in terms of the development of extremely weak slowly-dynamic ($\sim 60\,\mathrm{MHz}$) magnetic correlations of Yb moments of less than $10^{-2}\mu_B$ below $\sim 10\,\mathrm{K}$. The present data (based on a wider temperature range and a series of compounds) cannot confirm those conclusions. In contrast to the earlier work, we observed distinct changes with temperature of the shape of zero field spectra with characteristic temperatures of $\sim 20\,\mathrm{K}$, $\sim 100\,\mathrm{K}$ and $\sim 150\,\mathrm{K}$. Also, we found no difference in behavior in the relaxation rate of the various $Yb_{1-x}Lu_xB_{12}$ compounds in a longitudinal field of $10\,\mathrm{mT}$. Such a field largely suppresses the influence of the ^{11}B nuclear moments. In all compounds the relaxation rate peaked at $150\,\mathrm{K}$. These findings exclude magnetic correlations as the origin of muon spin relaxational behavior. It is proposed that Yb carries no detectable moment and that the dominant features of the μSR spectra arise from molecular dynamics, probably within the B_{12} clusters. This view is supported by recent ^{171}Yb NMR measurements² showing a minimum of $1/T_1$ around $15\,\mathrm{K}$ (i.e. close to one of the μSR characteristic temperatures). Furthermore, comparing NMR results on ^{171}Yb and ^{11}B shows additional relaxation processes for the B ions to be present. ¹A. Yaouanc et al., Europhysics Letters, 47, (1999) 247. ²K. Ikushima et al., Physica, **B274**, (2000) 274.